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Abstract 

In this paper, a general method for generating quasiper- 
iodic lattices is given. It is based on point multilattices 
which may be transformed into quasilattices in a new 
manner. A rounding operation allows the conversion of 
amassments of  points in the multilattice into single points 
of  a perfect quasicrystalline structure. Several examples 
are given. 

1. Introduction 

Intensive investigations of quasiperiodic structures began 
with the discovery of the icosahedral phase in rapidly 
solidified A1Mn (Shechtman et al., 1984). It is still a 
matter of debate which models provide the most appro- 
priate description of quasicrystalline structures. Follow- 
ing the methods of crystallography, the atomic structure 
of a quasicrystal is described with a quasiperiodic lattice 
which is decorated with clusters. A popular method for 
generating quasiperiodic lattices and atomic structures is 
the cut and projection of  structures that are periodic in 
higher-dimensional spaces. This method was success- 
fully applied to icosahedral quasicrystals of  A1CuFe type 
(Janot, 1993; Le Lann & Devaud 1995). Besides such 
perfect quasiperiodic structures, random tiling models are 
used (Elser, 1996). Another technique is called the gen- 
eralized dual or multigrid method. The generation of  the 
Penrose tiling and its extension to the three-dimensional 
Penrose tiling is determined also by this technique (de 
Bruin, 1981; Kramer & Neff, 1984). The success of  
three-dimensional Penrose tiling for icosahedral quasi- 
crystals was only qualitative. The tiling could not explain 
the real density of quasicrystals. The distances between 
the scatterers in this tiling are about 1-2 nm. A decora- 
tion of  this tiling with clusters connected by linking 
atoms or with two or more clusters provides an accep- 

• table solution in this case. 
The several methods to obtain quasicrystals can be 

classified into four categories: the projection method and 
the section method, which do use higher-dimensional 
spaces; the inflation-deflation method and the dual 
method, which do not use higher-dimensional spaces 
explicitly (Yamamoto, 1996). 

A general method, which is based on point multi- 
lattices and a three-dimensional construction principle, is 
presented in the following. It is necessary to decorate the 
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structures obtained by the presented method with icosa- 
hedral clusters. 

2. The method 

The Bravais lattices are determined by all possible peri- 
odic arrays of  points in space. A multilattice or N-lattice 
is defined by a set of  N equal or different Bravais lattices. 
A star of 3N vectors in space (or 2N in the plane) 
describes the orientation of the N lattices amongst 
themselves, which is characterized by a point group. 
Now it is useful to determine one common point of the N 
lattices, which is called singularity. It is possible that the 
multilattice contains an infinite number of  common 
points. In this case, all common points are arranged 
periodically. 

A simple heuristic example explains the principle of  
the method in one dimension. Two linear lattices are 
given by 

x n - - 2 n  
(1) 

Y n = (  5 1 / 2 - 1 ) n ,  n s N .  

This multilattice (2-lattice) Of Xn and y,, has a singularity 
at zero. It is the only common point. But there are also 
many places where the distance between neighbouring xi 
and yi is shorter than half of  the minimal neighbour 
distance of  the two lattices [Ix i - Yi[ < 1 ( 5 1 / 2  _ 1)]. Such 
places are called amassments and the mean value of such 
neighbouring points is an amassment centre. All amass- 
ment centres represent an infinite quasiperiodic sequence 
of  points. These points form a quasiperiodic chain of the 
two segments L -- 51/2 and S = r: LSLSLLS . . .  [r is the 
golden mean, r = ½ (51/2 + 1)]. 

In an N-lattice, every point of the ith lattice is defined 
by the vector 

1" i --- nilXil -a t- ni2x~2 -]- nz3xi3 : ri(nil, ni2, n,3), (2)  

where x, 7 are fundamental vectors and ng are integers. It is 
reasonable to choose the singularity at the origin. The 
orientational arrangement of  the N-lattices (and their 
type) determines the density of amassments in the 
environment of  the singularity and is associated with the 
symmetry properties of the generating structure of 
amassment centres. It is important to obtain structures 
with a high density of  points and an infinite expansion. 
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200 GENERATION OF QUASIPERIODIC STRUCTURES 

Thus, a wide range of  possibilities can be found for 
choosing N-lattices. An amassment always contains N 
points (exactly one of  every lattice) and the amassment 
centre is characterized by the vector 

N 

h = ( l / N )  y ~  r k ( 3 )  
k = l  

and the condition 

m a x ( l r l  - h i ,  Ir2 - h i  . . . . .  IrN - h i }  < d/4, ( 4 )  

where d is the minimal neighbour distance of the 
N-lattices and m a x { . . .  } means the maximal value of the 
set in curly brackets• From (4), it follows that 

N 

u = ( l / N )  Y ~  Irk - h i  <d/4. ( 5 )  
k = l  

• u is called the radius of amassment. 
Passing through all points of  any lattice (the ith lattice) 

and checking whether the point belongs to an amassment 
or not yields the places of  the amassments. Any vector of 
the ith lattice [equation (2)] may be expressed by fun- 
damental vectors of the j th  lattice: 

ri(vlil, ni2, n,3) = ri(n~l, n~2, n~3) = nj1xjl "4- Bj2Xj2 "4-/'/j3Xj3. 

(6) 
In (6), the njl, njz, n'j3 are real numbers. They may be 
rounded to integers: 

round(n~k) = njk. (7) 

This operation yields the neighbouring point (or the 
associating vector) in the j th  lattice. It may be expressed 
by the rounding operator R: 

R { I r i ( n j 1 ,  n ~ 2 ,  n.~3) } = F j ( n j l ,  n j 2 ,  n j 3  ) .  ( 8 )  
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The choice of the ith lattice is insignificant - it may be 
the first. The vector h is now expressed as 

h =  ( 1 / N  r l ( n l l , n l z ,  n l 3 ) - - t -  ~ _ R { r i ( n ~ l  , n l ¢  , n k 3  , 

k = 2  

(9) 

as follows from (3) with the limitations (4) and (5) being 
valid. The limit can be substituted by any value a less 
than d/4. The resultant structure is expressed by {h}a. Its 
density of  points is lower than in {h}a/4. Investigations 
revealed an interesting property: the structure {h}a equals 
the structure {h}d i fa '  = a/k. They differ only in scale• k 
is. called the inflation factor and k > 1. {h},, contains all 
points of {h}a'. This property may be interpreted as the 
inflation rule. 

Fig. 1 shows a quasiperiodic structure with a 12-fold 
symmetry axis in the centre. It was obtained by a mul- 
tilattice of  three square lattices. They are arranged along 
the axes of symmetry of an equilateral triangle. The s•ide 
length of  the squares is 1. It is the minimal neighbouring 
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F i g .  2.  S i m u l a t e d  f i v e f o l d  ( a )  a n d  t w o f o l d  ( b )  d i f f r a c t i o n  p a t t e r n s  f o r  a 
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distance in the three lattices and ¼ is the limit in relations 
(4) or (5). However, the limit 0.23 was used. The inflation 
factor is 1/2 sin(zr/12) ~ 1.93. 

3. Generation of icosahedral quasierystals of 
AIMnSi type 

It is not difficult to produce quasicrystalline phases in 
A1SiMn alloys by melt spinning and a following heat 
treatment. Our selected-area diffraction (SAD) analysis 
of melt-spinning ribbons of composition A177MnlsSi 5 
shows almost perfect icosahedral areas. This corresponds 
with the results of other authors, which are summarized 
in several publications (Kelton, 1993). 

The simulated fivefold and twofold diffraction patterns 
are shown in Fig. 2. They represent the Fourier trans- 
formation of a structure, which was obtained by means of 
the method of amassment centres. A multilattice of five 
f.c.c, lattices was used. Every f.c.c, lattice was orientated 
along a triplet of three orthogonal twofold axes of a n  
icosahedron. The length of the f.c.c, unit cube is 1, d /4  is 
about 0.177 and the inflation factor is r 3 (arbitrarily 
chosen units). The reciprocal structure may be obtained 
with the same multilattice. Calculations revealed a simple 
relation between the limit a of the real structure {h}a and 
the limit arec of the associated Fourier transformed 
structure {h}a .  The product aarec is constant and equals 

2 about (0.09) . Furthermore, for the intensities I: 

I Oc. 1/u 2. (10) 

u is called the radius of amassment [relation (5)] of the 
reciprocal structure. For these reasons, the patterns of 
Fig. 2 may be obtained with a limit of about 0.1008 and 
the area of the spots is proportional to 1/u 2. The limit of 
the associated real structure is about 0.0804. Only dis- 
crete values of pair distances occur in this structure: 
1.640 62, 1.894 43, 2.506 09, 2.679 13, 2.915 23, 
3.065 25, 3.476 70 nm, . . . .  There are many and diverse 
coordination types. Considering only the first five pair 
distances, about 500 types may be found. If the limit a 
increases over 0.082, the distances 0.688 19, 1.170 82, 
3.141 56 nm, . . .  will appear additionally. This means 
that the density of points increases and the new scatterers 
cause extinctions in the diffraction pattern as well as a 
decrease of are c. 

Most details of Fig. 2 correspond to our experimental 
SAD results. But the ranges of calculated real distances 
are rather wide: 1.640 62 --+ 1.10 nm, 2.915 23 --+ 
1.96 nm, . . . .  Therefore, the scatterers cannot be atoms. 
It is necessary to decorate the structure with icosahedral 
clusters. The Mackay icosahedron is the most suitable 
candidate in this case. 

The possibility of stable clusters that can simulate 
different atoms in the Periodic Table and can serve as the 
building block for forming cluster materials is discussed 
by Khanna et al. (1995). The important role of sharing 
atoms by clusters for formation and stability of quasi- 
crystals is demonstrated by Jeong & Steinhardt (1997) 
using a Penrose-like tiling that is constructed by a single 
prototile. The choice of basic atomic clusters by a shell- 
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Fig. 3. First (e),  second (o) and third (®) layers of  a decagonal  structure with a repeti t ion un i t  o f  five equidistant  layers. 
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by-shell algorithm and a demonstration of quasicrystal- 
line growth using these clusters is reported by Borodin & 
Manichev (1996). Some experimental evidence was 
supplied by Ebert et al. (1996): they revealed the cluster 
structure of Czochralski-grown A1PdMn single quasi- 
crystals by scanning tunnelling microscopy investiga- 
tions. The surface is determined by clusters of various 
sizes which are formed by an elementary cluster of about 
0.9 um diameter. The pseudo-Mackay icosahedron is 
proposed here (Ebert et aL, 1996). The size of the 
observed elementary clusters is about of the order of the 
calculated distances between the scatterers in our model. 

4. Generation of  decagonal structures 

The method of amassment centres provides many pos- 
sibilities for modelling decagonal structures. Structures 
with up to seven different layers (repetition unit along the 
fivefold axis) besides structures with a quasiperiodic 
arrangement of the layers were found with this method 
up to now. One example will be given in the following. 

The multilattice consists of five equal lattices. The unit 
cell of these lattices is an oblique rhombohedron. If the z 
axis is the fivefold one, the fundamental units of the first 
lattice are expressed by 

0.5 ) 
(r/2)[1 - 1/(r + 2)] 1/2 , 

1 

( 05 t (0 )  (r/2)[1 - 1/(r + 2)] 1/2 , 0 . 

1 r + 2  

The fundamental units of the other four lattices will be 
obtained by rotating around the z axis (angle 2zr/5). The 
result is shown in Fig. 3. Five equidistant layers form the 
repetition unit of this structure. The fourth and fifth equal 
the third and second layers after rotation around rr. The 
value 0.25 was chosen for the limit a. A rotation to the 
position of a fivefold axis other than the z axis of an 
imagined icosahedral structure reveals a pseudo-fivefold 
arrangement in this structure. In practice, the decagonal 

structures obtained by the method must be decorated 
with clusters. A pentagonal cluster-column model for 
AlNiCo quasicrystals is presented by Tsuda et al. (1996) 
and shows good agreement with experimentally observed 
HREM images. 

5. Conclusions 

The presented method offers the possibility of modelling 
experimentally observed quasicrystalline states. Solu- 
tions were also found for icosahedral phases of the 
A1CuFe type as well as octagonal quasicrystalline struc- 
tures. In many cases, an additional decoration of the 
obtained structures will be required. 

Only multilattices with a high density of amassments 
which fill the space homogeneously are important. It 
seems complicated to classify all structures that may be 
produced this way. There are good reasons for the 
assumption that for each structure the associated reci- 
procal structure also may be generated by means of this 
method. 
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